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Abstract

This thesis investigates heat and mass transfer, bio-convection and entropy gen-

eration in Prandtl-Eyring hybrid nanofluids (P-EHNF). The flow and thermal

transport properties of P-EHNF are examined using a slippery heated surface. In

this research, the effects of porous materials, Cattaneo-Christov heat flow, radia-

tive flux, chemical reaction, bio-convection lewis number, brownian motion and

thermophoresis have also been investigated. This study investigated single-walled

carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) uti-

lizing engine oil (EO) as a base fluid. The PDEs have been converted into ordinary

differential equations (ODEs), and then solved using the shooting method. Graph-

ical representation of the flow depicts the temperature, concentration, motile mi-

croorganism, and entropy profiles. Variation in drag force and Nusselt number for

various dimensionless parameters are shown in tables. It is notable that there is

continuously larger rise in temperature when comparing the heat transfer rate of

P-EHNF (MWCNT-SWCNT/EO) to nanofluid (SWCNT-EO). As the size of the

nanoparticles rises, the entropy of the model increases.
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Chapter 1

Introduction

Fluid mechanics is the branch of physics which studies the forces acting on and

within fluids (liquids, gases, and plasmas). There are numerous uses of fluid

mechanics in astrophysics, mechanical and chemical engineering, and biological

systems. It is an exciting branch of physics that deals with the motion of gases

and liquids as well as how they interact with their environment. The principles of

fluid mechanics, can be used to comprehend the motion of fish in water and the

flight of birds in the air. Such knowledge aids in the design of ships and airplanes.

The equations of fluid mechanics can also be used to explain how thunderstorms

and hurricanes form.

A thin layer of fluid in adjacent with the surface of pipes and wings of an aircraft

defines the limits of liquid mechanics. Shear forces in the boundary layer might

harm the liquid. The values of speed exists within the maximum and zero bound-

ary layer speeds because the fluid is in contact with the surface. Prandtl introduced

the idea of boundary layers in 1904 to explain how viscous fluid behaves near solid

boundries for details one can see [1] by Aziz et al. Prandtl presented the idea of

boundary layer in high Reynolds number flows and developed the boundary layer

equations by simplifying the Navier Stokes equations to produce approximate so-

lutions. Prandtl’s boundary layer equations appear in a variety of physical designs

of fluid mechanics. Hussain et al. [2] found that the convective heat transfer has

been thicken the thermal boundary layer as a Casson fluid moves in the direction

1
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of the expanding porous wedge. The literature contains several studies examining

the effects of different physical parameters on boundary layer flow [3, 4] with a

variety of liquids. [5, 6].

Many scientists are currently interested in hybrid nanofluid. Hybrid nanofluids are

made of two different kinds of nanoparticles combined into one fluid. The hybrid

nanofluid’s thermal characteristics are superior than those of the main liquid and

nanofluids. Hybrid nanofluids are frequently used in solar systems, auto’s, and

lubricant in machining and production. Suresh et al. [7], presented that copper

nanoparticles when mixed at sufficient level with alumina matrix will preserve the

strength of the hybrid nanofluids. Alumina nanoparticles have excellent thermal

stability and inactivity, while copper nanoparticles have higher thermal conduc-

tivity than alumina nano particles.

For the performance of heat transmission in hybrid-nanofluid, Yildiz et al. [8]

proposed that the theoretical and experimental results are equivalent for ther-

mal conductivity models. The hybridization of nanoparticles at a lower particle

percentage enhanced heat transport than a mono nanofluid. Waini et al. [9] inves-

tigated unsteady flow and heat transfer of a hybrid nanofluid in a curved surface.

With the change in curve, the involvement of dual solutions increased the volume

ratio of Cu nanoparticles. Qureshi et al. [10] depicts the properties of the HMC

nanofluid by using a straight obstacle channel. According to their research, ex-

panding the radius of barrier can enhance heat transmission up to 11.9%. Mabood

and Akinshilo [11] examined the stability of flowing viscous hybrid nanofluid on a

stretching surface under radiation and uniform magnetic effect.

The CCHFM explains the transfer of heat in visco-elastic flows induced by an expo-

nentially stretching sheet. Cattaneo proposed a successful modification to Fourier’s

model by introducing a important feature of thermal relaxation time. The bound-

aries of this model may be related to the thermal relaxation time. Dogonchi and

Ganji [12] used a CCHFM to study unstable compressing MHD nanofluid flow

through parallel plates. They discovered that the thermal relaxation parameter

reduced heat transfer process. Muhammad et al. [13] found that fluid temperature

decreased as thermal relaxation increased. The Cattaneo-Christov heat flux model
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has been used by other researchers to analyze flow of fluid and classify the phys-

ical aspects that are effected by thermal relaxation. Waqas et al. [14] introduced

mathematical modeling for hybrid type nanofluid flow in a rocket engine using

the Cattaneo-Christov model. The discovery demonstrated that when thermal

relaxation and melting parameters vary, the temperature decreases while the Biot

number rises.

It was also necessary to conduct research to identify the non-Newtonian aspect of

hybrid nanofluids. Yan et al. [15] investigated the rheological behavior of a pow-

ered pump using a non-Newtonian hybrid nanofluid. They stated that the viscos-

ity decreased to less than 21% at the highest volume fraction of hybrid nanofluid.

Numerous studies have been done for various non-Newtonian hybrid nanofluids,

including MWCNT-Al2O3/5W50 by Esfe et al. [16], and aluminum alloy nanopar-

ticles by Madhukesh et al. [17]. Despite this, there aren’t many studies looking

into the behavior of viscoelastic hybrid nanofluids. The power-law, the Prandtl

fluid, and the P-E are some of the models that can be used to analyze the phys-

ical characteristics of the viscoelastic fluid. The non-linear relationship between

shear stress and deformation rate is indicated by the power-law model. It has

been proposed that shear stress is related to the sine inverse function of the rate

of deformation by the Prandtl model and to the hyperbolic sine function of defor-

mation rate by the P-E model.

Hussain et al. [18] examined the physical aspects of MHD Prandtl-Eyring fluid

flow and reported that in the flow domain when fluid parameter rised at all po-

sitions then significant increase in momentum transportation has been seen. The

entropy of the P-E fluid flow model on a rotating cone has been investigated by

Li et al. [19] which demonstrates that when the viscosity parameter is increased

in magnitude, the behavior of the velocity and temperature changes.

Sahoo [20], investigated that a thermo-hydraulic performance of ternary hybrid

nanofluid is significantly influenced by the particle shapes. Meanwhile Rashid et

al. [21] have discovered that sphere shaped nanoparticles have more temperature

disturbance and heat transfer than the other shapes.

Several studies have been conducted to investigate the effect of porosity materials,
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viscid dissipative flow, Cattaneo-Christov heat flow, and thermal radiative flow.

However, the impact of shape of nanoparticles is still to be addressed. To fill this

space, the interest of present study is on the impacts of solid properties of liquid

and the choas in the boundary layer using the shooting method.

Shah et al. [22] studied the heat transfer characteristics of a magnetohydrodynamic

Prandtl hybrid nanofluid over a stretched surface with the addition of bioconvec-

tion and chemical reaction effects. Getting inspiration from this research, in the

present research, heat transfer properties of P-EHNF over a stretched surface in

presence of bio-convection are discussed. Additionally it is checked how the Lewis

number, chemical reaction parameter, Brownian motion, and thermophoresis affect

concentration in mono and hybrid nanofluid flow, and determine motile affected

by bio-convection Lewis number, and peclet number.

1.1 Thesis Contributions

In this thesis, a detailed review of article [23] by Jamshed et al. is presented.

It is observed that no study on Prandtl-Eyring hybrid nanofluid with Cattaneo-

Christov heat flux model and bio-convection has yet been done. The aim of this

research is to further extend [23] by discussing the mass transfer. For this purpose

concentration and motile microorganism equations are added to the previous flow

problem. Tables and graphs have been used to discuss the effects of different

physical parameters that are relevant.

1.2 Layout of the Thesis

A brief overview of contents of the thesis is provided below.

Chapter 2 includes some fundamental terminologies and definitions that are es-

sential for understanding the concepts discussed later.

Chapter 3 discuss in detail the thermal efficiency of Prandtl-Eyring hybrid nanofluid.
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It contains a detailed review of [23]. Numerical technique shooting method is used

to obtain the solutions.

Chapter 4 extends the proposed model flow discussed in Chapter 3 by including

the concentration and motile equation. PDEs have been transformed into ODEs

using the similarity transformations and then solved by shooting method. This

new model discuss the bio-convection and mass transfer. The aim of this whole

research is to increase the heat transfer.

Chapter 5 provides the thesis concluding remarks.

References used in this thesis are mentioned in Biblography.



Chapter 2

Preliminaries

Fluid dynamics is the sub-branch of fluid mechanics that deals with fluid in motion.

This chapter contains some basic definitions and governing laws, which are helpful

in the study of our main problem.

2.1 Some Basic Terminologies

This section addresses some important properties of fluids.

Definition 2.1.1. (Fluid)

“A substance exists in three primary phases: solid, liquid, and gas. (At very high

temperatures, it also exists as plasma.) A substance in the liquid or gas phase is

referred to as a fluid. Distinction between a solid and a fluid is made on the basis of

the substances ability to resist an applied shear (or tangential) stress that tends to

change its shape. A solid can resist an applied shear stress by deforming, whereas

a fluid deforms continuously under the influence of shear stress, no matter how

small. In solids stress is proportional to strain, but in fluids stress is proportional

to strain rate. When a constant shear force is applied, a solid eventually stops

deforming, at some fixed strain angle, whereas a fluid never stops deforming and

approaches a certain rate of strain.” [24]

6
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Definition 2.1.2. (Fluid Mechanics)

“The fluid mechanics is defined as the science that deals with the behavior of fluids

at rest or in motion, and the interaction of fluids with solids or other fluids at the

boundaries.” [24]

Definition 2.1.3. (Fluid Dynamics)

“The study of fluid if the pressure forces are considered for the fluids in motion,

is called fluid dynamics.” [25]

Definition 2.1.4. (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [25]

Definition 2.1.5. (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [25]

The SI units of viscosity is kgm−1s−1.

Definition 2.1.6. (Density)

“Density is defined as the mass per unit volume. that is,

ρ =
m

V

where m and V are the mass and volume of the substance, respectively.”[25]

The SI units of density is kg
m3 .

Definition 2.1.7. (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called ‘nu’. Mathematically,

ν =
µ

ρ
.” [25]
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The SI units of kinematic viscosity is m2s−1.

Definition 2.1.8. (Nanofluid)

“Nanofluids are engineered by suspending nanoparticles with average size below

100 nm in traditional heat transfer fluids such as water, oil, and ethylene glycol. A

very small amount of guest nanoparticles, when dispersed uniformly and suspended

stably in host fluids, can provide dramatic improvements in the thermal properties

of host fluids.” [26]

Definition 2.1.9. (Hybrid Nanofluid)

“Hybrid nanofluid is a very new type of nanofluids that contains two or more

various nanoparticles. The use of hybrid nanofluids is aimed at simultaneously

using the physical and chemical properoties of two or more different types of

nanoparticles, for improving the base fluid properties.” [27]

Definition 2.1.10. (Hydrodynamics)

“The study of the motion of fluids that are practically incompressible such as

liquids, especially water and gases at low speeds is usually referred to as hydrody-

namics.” [28]

Definition 2.1.11. (Magnetohydrodynamics)

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically con-

ductoing fluids in the presence of magnetic fields, either externally applied or

generated within the fluid by inductive action.” [28]

Definition 2.1.12. (Boundary Layer)

“Viscous effects are particularly important near the solid surfaces, where the strong

interaction of the molecules of the fluid with molecules of the solid causes the

relative velocity between the fluid and the solid to become almost exactly zero

for a stationary surface. Therefore, the fluid velocity in the region near the wall

must reduce to zero. This is called no slip condition. In that condition there is no

relative motion between the fluid and the solid surface at their point of contact. It

follows that the flow velocity varies with distance from the wall; from zero at the

wall to its full value at some distance away, so that significant velocity gradients
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are established close to the wall. In most cases this region is thin (compared to

the typical body dimension), and it is called a boundary layer.” [29]

Definition 2.1.13. (Prandtl–Eyring Nanoliquid)

“Prandtl–Eyring nanoliquid is nonlinear and mixed convection flow of nanofluid

with activation energy. So in literature, there are many fluid models that are

suggested for non-Newtonian fluid. Prandtl-Eyring fluid (PEF) model is also one

of them.” [30]

2.2 Types of Flow

Some important types of flow are discussed in this section:

Definition 2.2.1. (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [25]

Definition 2.2.2. (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [25]

Definition 2.2.3. (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ ≠ k,

where k is constant.”

For example, air is compressible, which means that you can compress the air and

add a little bit more air. [25]

Definition 2.2.4. (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for
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the fluid flow. Liquids are generally incompressible while gases are compressible,

Mathematically,

ρ = k,

where k is constant.”

For example, cup of water can be put into a differently shaped cup-sized container,

but we would not be able to squeeze that whole cup of water into half cup-sized

container. [25]

Definition 2.2.5. (Steady Flow)

“Steady flow is defined as that type of flow in which the fluid characteristics like

velocity, pressure, density, etc., at a point do not change with time. Thus for

steady flow, Mathematically, we have

∂Q

∂t
= 0,

where Q is any fluid property.” [25]

Definition 2.2.6. (Unsteady Flow)

“Unsteady flow is defined as that type of flow in which the fluid characteristics

like velocity, pressure, density, etc., at a point do change with time. Thus for

Unsteady flow, Mathematically, we have,

∂Q

∂t
̸= 0,

where Q is any fluid property.” [25]

Definition 2.2.7. (Laminar Flow)

“Laminar flow is defined as that type of flow in which the fluid particles move

along well-defined paths or stream lines and all the stream-lines are straight and

parallel.” [25]

Definition 2.2.8. (Turbulent Flow)

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag

way.” [25]
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2.3 Types of Fluid

The fluids are classified into the following types:

Definition 2.3.1. (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity.” [25]

Definition 2.3.2. (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” Examples are water, diesel and honey. [25]

Definition 2.3.3. (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.”

Examples are water, oil and alcohol. [25]

Definition 2.3.4. (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.”

Some examples of non-Newtonian fluids are paint, shampoo, and mayonnaise

etc. [25]

Definition 2.3.5. (Ideal Plastic Fluid)

“A fluid, in which shear stress is more than the yield value and shear stress is

proportion to the rate of shear strain (or velocity gradient), is known as ideal

plastic fluid.”

Examples are blood and saliva. [25]

2.4 Modes of Heat Transfer and Mass Transfer

Heat transfer is the phenomenon of transferring energy and entropy from one place

to another. The formal definition of heat transfer and its different types are given

below.
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Definition 2.4.1. (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference. Heat transfer may take place in

one or more of its three basic forms: conduction, convection, and radiation.” [31]

Definition 2.4.2. (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion. The Fourier heat conduction law states that the heat flow is proportional to

the temperature gradient.”

Examples are during the ironing process, heat is transferred from the iron to the

fabric. Chocolate candy in a hand will eventually melt as heat is conducted from

a hand to the chocolate. [31]

Definition 2.4.3. (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newton’s law of cooling. It states that the heat flow is proportional to

the difference of the temperatures of the two media. The proportionality coefficient

is called the convection heat transfer coefficient.”

Examples are heating water on the stove and air Conditioner. [31]

Definition 2.4.4. (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium.”

Examples are microwaves from an oven, X rays from an X-ray tube and ultraviolet

light from the sun. [31]

Definition 2.4.5. (Mass transfer)

“Mass transfer is the flow of molecules from one body to another when these

bodies are in contact or within a system consisting of two components when the

distribution of materials is not uniform. When a copper plate is placed on a steel

plate, some molecules from either side will diffuse into the other side. When salt is

placed in a glass and water poured over it, after sufficient time the salt molecules
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will diffuse into the water body. A more common example is drying of clothes or

the evaporation of water spilled on the floor when water molecules diffuse into the

air surrounding it. Usually mass transfer takes place from a location where the

particular component is proportionately high to a location where the component

is proportionately low. Mass transfer may also take place due to potentials other

than concentration difference.” [29]

2.5 Dimensionless Numbers

The following dimensionless numbers will appear in discussion given in the next

chapters.

Definition 2.5.1. (Eckert Number)

“It expresses the ratio of kinetic energy to a thermal energy change. Mathemati-

cally, it can be written as

Ec =
w2

∞
CpδT

where w∞ is fluid flow velocity far from body, Cp is the specific heat capacity of

fluid and δT denote the temperature difference” [32]

Definition 2.5.2. (Prandtl Number)

“ The Prandtl number is the ratio of momentum to heat diffusivities. Mathemat-

ically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp

k

where µ represents the dynamic viscosity, Cp denotes the specific heat and k stands

for thermal conductivity.” [33]

Definition 2.5.3. (Skin Friction Coefficient)

“The skin friction coefficient can be defined as

Cf =
2τw
ρw2

∞
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where τw denotes the wall shear stress, ρ is the density and the velocity of free

fluid flow is denoted by w∞.” [32]

Definition 2.5.4. (Nusselt Number)

“It is a dimensionless number, first introduced by a German engineer Ernst Kraft

Wilhelm Nusselt and Mathematically,

Nu =
αL

k

where α represents the heat transfer coefficient, L denotes the characteristic length

and k is the thermal conductivity. It expresses the ratio of the total heat transfer

in a system to the heat transfer by conduction.” [32]

Definition 2.5.5. (Biot Number)

“This number expresses the ratio of the heat flow transferred by convection on a

body surface to the heat flow transferred by conduction in a body. Mathematically

Bi = α(2πfλcQ)
−1
2

Where α is Heat transfer coeffient, f is frequency, c is specific heat capacity, Q is

density and λ is thermal conductivity.” [32]

Definition 2.5.6. (Reynolds Number)

“It is defined as the ratio of inertial forces ρU2 to viscous forces µU/L. Mathe-

matically,

Re =
ρUL

µ
,

Here ρ denotes the density of the fluid, U the characteristic flow velocity, µ is the

fluid viscosity, and L is a characteristic dimension of the flow region.” [31]

Definition 2.5.7. (Sherwood Number)

“The Sherwood number was first introduced by an American chemical engineer,

Thomas Kilgore Sherwood and is defined as,

Sh =
BL

D
,
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where B is the mass transfer coefficient, L denotes the characteristic length and D

stands for molecular diffusivity. It expresses the ratio of the heat transfer to the

molecular diffusion. It characterizes the mass transfer intensity at the interface of

phases.” [32]

2.6 Conservation Laws

Conservation laws such as conservation of mass, energy and momentum are of

great importance for researchers. These laws apply to closed systems and extend to

regions in space called controlled volumes. Here we briefly discuss the conservation

laws.

Definition 2.6.1. (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change of

mass in a fixed volume is equal to the net rate of flow of mass across the surface.

The mathematical statement of the principle results in the following equation,

known as the continuity (of mass) equation

∂ρ

∂t
+∇.(ρv) = 0,

where t is time , ρ is density of fluid and v is the fluid velocity., and ∇ is the nabla

or del operator. By introducing the material derivative D
Dt
.

D

Dt
=

∂

∂t
+ v.∇,

the above continuity equation can be expressed in the alternate, non-conservation

form

∂ρ

∂t
+ v.∇ρ+ ρ∇.v =

Dρ

Dt
+ ρ∇.v = 0

For steady-state conditions, the continuity equation becomes

∇.(ρv),



Preliminaries 16

when the density changes following a fluid particle are negligible, the continuum

is termed incompressible and we have Dρ
Dt

= 0.

The continuity equation then becomes

∇.v = 0

which is often referred to as the incompressibility condition or incompressibility

constraint.” [31]

Definition 2.6.2. (Momentum Equation)

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newton’s third law of action and reaction

governs the internal forces. Newton’s second law can be written as:

∂(ρv)

∂t
+∇.[(ρv)⊗ v] = ∇.T+ ρg,

where ⊗ is the tensor (or dyadic) product of two vectors, g is the body force vec-

tor, measured per unit mass and normally taken to be the gravity vector, T is the

Cauchy stress tensor ( N
m2 ), ρ is density of fluid and v is the fluid velocity and ∇

is the nabla or del operator.

The form of momentum equation shown above is the conservation form that is

most often utilised for compressible flows. This equation may be simplifed to a

form more commonly used with incompressible flows. Expanding the first two

derivatives and collecting terms

ρ

(
∂v

∂t
+ v∇.v

)
+ v

(
∂ρ

∂t
+∇.ρv

)
= ∇.T+ ρg,

The second term in the parentheses is continuity equation and neglecting this term

allows to reduce to the non-conservation form

ρ
Dv

Dt
= ∇.T+ ρg.” [31]
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Definition 2.6.3. (Energy Equation)

“The law of conservation of energy(or the first law of thermodynamics) states that

the time rate of change of the total energy is equal to the sum of the rate of work

done by applied forces and change of heat content per unit time.

∂ρe

∂t
+∇.ρv e = −∇.q+Q+ ϕ,

where ϕ is the dissipation function, e is the internal energy q is the heat flux vector

and Q is internel heat generation.” [31]

2.7 Shooting Method

Shooting technique is utilized to solve the boundary value problem arise from the

main problem. Take the following nonlinear boundary value problem into consid-

eration to further explain the shooting method.

f ′′′(η) = (−1/2)f(η)f ′′(η)

f(0) = 0, f ′(0) = 0 f ′(η) = 1.

 (2.1)

Introduce the following notations, to reduce the order of above boundary value

problem.

f = Y1 f ′ = Y ′
1 = Y2 f ′′ = Y ′

2 = Y3 f ′′′ = Y ′
3 . (2.2)

As a result, (2.1) is converted into the following system of first order ODEs.

Y ′
1 = Y2, Y1(0) = 0, (2.3)

Y ′
2 = Y3, Y2(0) = 0, (2.4)

Y ′
3 = (−1/2)Y1Y3 Y3(0) = w, (2.5)

where w is a guess for the missing initial condition.

The RK-4 approach will be used to numerically solve the above IVP. Choose the
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missing condition w in such a way that.

Y2(η, w) = 1. (2.6)

For convenience, now onward Y2(η, w) will be denoted by Y2(w).

Let us further denote Y2(w)− 1 by H(w), so that

H(w) = 0. (2.7)

The above equation can be solved by using Newton’s method with the following

iterative formula.

wn+1 = wn − H(wn)
∂H(wn)

∂w

, n = 0, 1, 2, 3...

or

wn+1 = wn − Y2(w
n)− 1

∂Y2(wn)
∂w

. (2.8)

To find ∂Y2(wn)
∂w

, introduce the following notations.

∂Y1
∂w

= Y4,
∂Y2
∂w

= Y5,
∂Y3
∂w

= Y6 (2.9)

As a result of these new notations the Newton’s iterative scheme, will then get the

form.

wn+1 = wn − Y2(w
n)− J

Y5(wn)
. (2.10)

Now differentiating the system of two first order ODEs (2.3)-(2.5) with respect

to w, we get three new ODEs, as follows.

Y ′
4 = Y5, Y4(0) = 0. (2.11)

Y ′
5 = Y6, Y5(0) = 0. (2.12)

Y ′
6 = (−1/2)

(
Y1Y6 + Y3Y4

)
, Y6(0) = 1. (2.13)
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Writing all the six ODEs following initial value problem is obtained.

Y ′
1 = Y2, Y1(0) = 0,

Y ′
2 = Y3, Y2(0) = 0,

Y ′
3 = (−1/2)Y1Y3, Y3(0) = w,

Y ′
4 = Y5, Y4(0) = 0,

Y ′
5 = Y6, Y5(0) = 0,

Y ′
6 = (−1/2)

(
Y1Y6 + Y3Y4

)
, Y6(0) = 1.

The above IVP will be solved numerically by Runge-Kutta method of order four.

The stopping criteria for the Newton’s technique is set as,

| Y2(w)− 1 |< ϵ,

where ϵ > 0 is an arbitrarily small positive number.



Chapter 3

The Enhanced Thermal

Performance of Prandtl–Eyring

Hybrid Nanofluid

3.1 Introduction

This chapter discusses the in-depth study of the work of Jamshed et al. [23].

In this article, heat transport through P-E hybrid nanofluids and entropy for-

mation are investigated. Using a slippery heated surface, the flow and thermal

transport characteristics of P-EHNF nanofluid are examined. Additionally, the

impacts of porous medium, C-C heat flow, and thermal radiative flux will be

examined in this investigation. In this work, engine oil (EO) is used as a base

fluid to study single-walled carbon nanotubes (SWCNT) and multi-walled carbon

nanotubes (MWCNT). Significant findings for various variables are shown by mea-

surements of flow, temperature, drag force, Nusselt number, and entropy. Graphs

are presented to depict the physical significance of various dimensionless values.

We observed the trend of the velocity, temperature and entropy distributions by

changing the values of the various factors.

20
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3.2 Mathematical Modeling

The stretching velocity of movable horizontal plate is given as

Uw(x, t) = bx,

where b is a ratio of expanding plate. The surface heat is Tw(x, t) = T∞ + bx,

where b, Tw and T∞ denote the degree of temperature change, surface heat,

and surroundings, respectively. The plate is designed to be slippery, while the

temperature of the surface is changing.

Primarily SWCNT nano solid particles synthesise the nanofluid in the EO-based

liquid at an interaction volume fraction ϕST , and it is fixed at 0.18 during the

analysis. MWCNT nano molecules are extended in combination to obtain a hybrid

nanofluid at the concentration size ϕMT .

Figure 3.1: Geometry of flow model.
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3.2.1 Prandtl–Eyring Fluid Stress Tensor

Prandtl–Eyring fluid stress tensor is given in the following mathematical shape by

Mekheimer and Ramadan [34].

τ =

Ad sin
−1

(
1
C

[(
∂B1

∂y

)
+
(
∂B2

∂x

)2] 1
2

)
[(

∂B1

∂y

)
+
(
∂B2

∂x

)2] 1
2

(
∂B1

∂y

)
,

where Ad and C are the material constants of the Prandtl fluid model and the

curving velocity shows the mechanisms
←−
B = [B1(x,y,0), B2(x,y,0), 0].

3.2.2 Suppositions and Terms of System

The flow system is governed by the constraints and the following guiding principles:

i. 2-D laminar time-dependent flow

ii. Single phase (Tiwari-Das) scheme

iii. CCHFM

iv. Thermal radiative flow

v. Nano solid particles shape-factor

vi. slippery boundary constraints

3.2.3 Governing Equations

The flow formulas of the viscous Prandtl–Eyring hybrid nanofuid, in combination

with a porous material, Cattaneo–Christov heat flux and thermal radiative flow

utilising the approximate boundary-layer are
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∂B1

∂x
+
∂B2

∂y
= 0, (3.1)

B1
∂B1

∂x
+B2

∂B2

∂y
=

Ad

Cρhnf

(
∂2B1

∂y2

)
− Ad

2C3ρhnf

∂2B1

∂y2

(
∂B1

∂y

)2

− µhnf

ρhnfk
B1, (3.2)

B1
∂T
∂x

+B2
∂T
∂y

=
1

(ρCp)hnf

(
khnf

(∂2T
∂y2

)
+ µhnf

(∂B1

∂y

)2
− ∂qr
∂y

)

− λ0

(
B1
∂B1

∂x

∂T
∂x

+B2
∂B2

∂y

∂T
∂y

+B1
∂B2

∂x

∂T
∂y

+B2
∂B1

∂y

∂T
∂x

+B2
1

∂2T
∂x2

+B2
2

∂2T
∂y2

+ 2B1B2
∂2T
∂x∂y

)
(3.3)

Here Eq. (3.1) is continuity equation. The components of velocity in the x and y

direction are denoted by B1 and B2 respectively and T is temparature of fluid.

The associated BCs are taken as. [35]

B1(x, 0) = Uw +Nς

(∂B1

∂y

)
, B2(x, 0) = Vς , − kς

(∂T
∂y

)
= hς(T w − T ) (3.4)

B1 → 0, T → T∞, as y →∞. (3.5)

Following are the vital parameters appearing in (3.1)-(3.5):

Surface permeability Vς ,

Heat transfer coefficient hς ,

Porosity (k),

Rigid heat conductivity kς ,

Radiative heat flux constant is qr.

3.2.4 Rosseland Approximation

P-EHNF is non-Newtonian and thicker fluid. The Rosseland approximation is

applied to optically thick media and gives the net radiation heat flux by expression.

qr = −
4σ∗

3k∗
∂T 4

∂y
,
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where σ∗ is the Stefan-Boltzman constant and k∗ is the absorption coefficient. If

the temperature difference is very small, then the temperature T 4 can be expanded

about T∞ using Taylor series, as follows.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

neglecting the higher degree terms,

T 4 = T 4
∞ + 4T 3

∞(T − T∞),

= T 4
∞ + 4T 3

∞T − 4T 4
∞,

= −3T 4
∞ + 4T 3

∞T ,

= 4T 3
∞T − 3T 4

∞.

3.2.5 Thermophysical Properties

The thermophysical properties of nanofluid and hybrid nanofluid are shown in the

following tables which are taken from [23]:

Table 3.1: Thermo-physical properties of Nanofluid

Feature Nanofluid

Density ρnf = (1− ϕ)ρf − ϕρs,

Dynamical viscidness µnf =
µf

(1−ϕ)2.5
,

Heat capacity (ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)s ,

Thermal conductivity
κnf

κf
=

(κς+(m−1)κf )−(m−1)ϕ(κf−κς)

(κς+(m−1)κf )+ϕ(κf−κς)
.

ϕ is the nano solid-particle size coeffcient. µf , ρf , (Cp)f and κf are dynamical

viscosity, intensity, functioning thermal capacity, and thermal conductivity of the

standard fluid, respectively. The additional characteristics ρs, (Cp)s and κs are

the concentration, effective heat capacitance, and heat conductance of the nano

molecules, correspondingly.
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Table 3.2: Thermo-physical properties of Hybrid nanofluid

Feature Hybrid nanofluid

Viscosity (µ) µhnf = µf (1− ϕST )
−2.5(1− ϕMT )

−2.5

Density (ρ) ρhnf = [(1− ϕMT )(1− ϕST )ρf + ϕSTρp1 ] + ϕMTρp2

Heat Capacity (ρCp) (ρCp)hnf = (1− ϕMT )[(1− ϕST )(ρCp)f + ϕST (ρCp)p1 ]

+ ϕMT (ρCp)p2

Thermal conductivity (κ)
κhnf

κnf
=
[
κp2+(m−1)κnf−(m−1)ϕMT (κnf−κp2 )

κp2+(m−1)κnf+ϕMT (κnf−κp2 )

]
,

κnf

κf
=
[
κp1+(m−1)κf−(m−1)ϕST (κ1f−κp1 )

κp1+(m−1)κf+ϕST (κf−κp1 )

]

µhnf , ρhnf , (ρCp)hnf and κhnf are mixture nanofuid functional viscosity, concen-

tration, exact thermal capacitance, and thermal conductance.

Following notations are used for simplification purpose:

ϕa = (1− ϕST )
2.5(1− ϕMT )

2.5, (3.6)

ϕb = (1− ϕMT )
(
(1− ϕST ) + ϕST

ρp1
ρf

)
+ ϕMT

ρp2
ρf
, (3.7)

ϕc = (1− ϕMT )[(1− ϕST ) + ϕST
(ρCp)p1
(ρCp)f

] + ϕMT
(ρCp)p2
(ρCp)f

, (3.8)

ϕd =
[κp2 + (m− 1)κnf − (m− 1)ϕMT (κnf − κp2)

κp2 + (m− 1)κnf + ϕMT (κnf − κp2)

]
×
[κp1 + (m− 1)κf − (m− 1)ϕST (κf − κp1)

κp1 + (m− 1)κf + ϕST (κf − κp1)

]
. (3.9)

3.2.6 Dimensionless Formulation of the Flow Model

For the conversion of the mathematical model (3.1)-(3.3) into the system of ODEs,

the following similarity transformation are used which are taken from [23].

Ω(x, y) =

√
b

νf
y, θ(Ω) =

T − T∞
Tw − T∞

,

ψ =
√
νfbxf(Ω),

 (3.10)

where ψ denotes the stream function.

The detailed procedure for the conversion of (3.1)-(3.3) into the dimensionless
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form is mentioned below.

B1 =
∂ψ

∂y

=
∂

∂y

(√
νfbxf(Ω))

)
=
√
νfbf

′(Ω)
∂Ω

∂y

= bxf ′(Ω). (3.11)

B2 = −
∂ψ

∂x

= − ∂

∂x

(√
νfbxf(Ω))

)
= −

(
f(Ω)

√
νfb(1) +

√
νfbxf

′(0)
)

= −f(Ω)
√
νfb (3.12)

∂B1

∂x
=

∂

∂x
(bxf ′(Ω))

= f ′(Ω)b+ bxf ′′(0)

= f ′(Ω)b. (3.13)

∂B2

∂y
=

∂

∂y

[
−f(Ω)

√
νfb
]

= −(
√
νfbf

′(Ω)
∂Ω

∂x
)

= −(
√
νfbf

′(Ω)
√

(b)/(νf ))

= −bf ′(Ω). (3.14)

∂B1

∂y
= bxf ′′(Ω)

√
b

νf
. (3.15)

∂2B1

∂y2
=

∂

∂y

(
bxf ′′(Ω)

√
b/νf

)
= bxf ′′′(Ω)

√
b/νf

∂Ω

∂y

= bxf ′′′(Ω)
√
b/νf

√
b/νf

=
b2

νf
xf ′′′(Ω). (3.16)(∂B1

∂y

)2
= x2

b3

νf
(f ′′(Ω))2. (3.17)

∂B2

∂x
= 0 (3.18)
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Equation (3.1) is quickly satisfied by using (3.13) and (3.14), as follows

∂B1

∂x
+
∂B2

∂y
= f ′(Ω)b− f ′(Ω)b = 0. (3.19)

Now, the dimensionless form of the momentum equation can be obtained by using

the derivatives calculated earlier.

B1
∂B1

∂x
+B2

∂B1

∂y
=

Ad

Cρhnf

(∂2B1

∂y2

)
− Ad

2C3ρhnf

∂2B1

∂y2

(∂B1

∂y

)2
− µhnf

ρhnfk
B1

⇒
(
bxf ′(Ω)

)(
f ′(Ω)b

)
+

(
− f(Ω)

√
νfb

)(
bxf ′′(Ω)

√
b

νf

)
=
A∗

1µfC

Cρhnf

(
b2

νf
xf ′′′(Ω)

)

− A∗
1µfC

2C3ρhnf

(
b2

νf
xf ′′′(Ω)

)(
bxf ′′(Ω)

√
b

νf

)2

− µhnf

ρhnfk
bxf ′(Ω)

⇒
(
bxf ′(Ω)

)(
f ′(Ω)b

)
+

(
− f(Ω)

√
νfb

)(
bxf ′′(Ω)

√
b

νf

)
=
A∗

1µf

ρhnf

(
b2

νf
xf ′′′(Ω)

)
− A∗

1µf

2C2ρhnf

(
b2

νf
xf ′′′(Ω)

)(
x2
(
f ′′(Ω)

)2 b3

νf

)
− µhnf

ρhnfk

(
bxf ′(Ω

)
⇒
(
b2x
(
f ′(Ω)

)2)− (f(Ω)f ′′(Ω)xb2
)

=
A∗

1µf

ρhnf

(
b2

νf
xf ′′′(Ω)

)
− A∗

1µf

2C2ρhnf

(
b5

ν2f
x3f ′′′(Ω)

(
f ′′(Ω)

)2)− µhnf

ρhnfk

(
bxf ′(Ω)

)
Since,

ρhnf =
(
1− ϕMT

)[
(1− ϕST )ρf + ϕSTρp1

]
+ ϕMTρp2

µhnf = µf

(
1− ϕST

)−2.5(
1− ϕMT

)−2.5

Kς =
νf
bk

νf =
µf

ρf

∴

(
b2x
(
f ′(Ω)

)2)− (f(Ω)f ′′(Ω)xb2
)

=

A∗
1µf(

1− ϕMT

)[
(1− ϕST )ρf + ϕSTρp1

]
+ ϕMTρp2

(
b2
µf

ρf

xf ′′′(Ω)

)
− A∗

1µf

2C2
(
1− ϕMT

)[
(1− ϕST )ρf + ϕSTρp1

]
+ ϕMTρp2

(
b5

µf

ρf
νf
x3f ′′′(Ω)

(
f ′′(Ω)

)2)

−
µf

(
1− ϕST

)−2.5(
1− ϕMT

)−2.5(
1− ϕMT

)[
(1− ϕST )ρf + ϕSTρp1

]
+ ϕMTρp2

1

νf

(
b2xKςf

′(Ω)
)
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⇒
(
f ′(Ω)

)2 − f(Ω)f ′′(Ω) =

A∗
1(

1− ϕMT

)[
(1− ϕST ) + ϕST

ρp1
ρf

]
+ ϕMT

ρp2
ρf

f ′′′(Ω)

− A∗
1(

1− ϕMT

)[
(1− ϕST ) + ϕST

ρp1
ρf

]
+ ϕMT

ρp2
ρf

(
b3x2

2C2νf
f ′′′(Ω)

(
f ′′(Ω)

)2)

−
(
1− ϕST

)−2.5(
1− ϕMT

)−2.5(
1− ϕMT

)[
(1− ϕST ) + ϕST

ρp1
ρf

]
+ ϕMT

ρp2
ρf

(
Kςf

′(Ω)
)

using (3.6) and (3.7)

⇒
(
f ′(Ω)

)2 − f(Ω)f ′′(Ω) =
A∗

1

ϕb

f ′′′(Ω)− A∗
1A

∗
2

ϕb

f ′′′(Ω)
(
f ′′(Ω)

)2 − 1

ϕaϕb

Kςf
′(Ω)

A∗
1f

′′′(Ω)
(
1− A∗

2f
′′(Ω)2

)
+ ϕb

(
f(Ω)f ′′(Ω)− f ′(Ω)2

)
− 1

ϕa

Kςf
′(Ω) = 0. (3.20)

The following dimensionless parameters are used in equation (3.20),

A∗
1 =

Ad

µfC
, A∗

2 =
b3x2

2C2νf
, Kς =

νf
bk
.

Now, for the conversion of energy equation (3.3), the following derivatives are

required.

θ(Ω) =
T − T∞
Tw − T∞

.

⇒ T = θ(Ω)(Tw − T∞) + T∞

= θ(Ω)bx+ T∞
∂T
∂x

= bθ(Ω) (3.21)

∂2T
∂x

= 0. (3.22)

∂T
∂y

=
∂

∂y

(
θ(Ω)bx+ T∞

)
= bxθ′(Ω)

(√ b

νf

)
. (3.23)

∂2T
∂y2

=
b2

νf
xθ′′(Ω). (3.24)

∂

∂x

(
∂T
∂y

)
=

∂

∂x

(
bxθ′(Ω)

√
b

νf

)
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∂2T
∂x∂y

= b

√
b

νf
θ′(Ω) (3.25)

qr = −
4σ∗

3k∗
∂T 4

∂y

= −4σ∗

3k∗
∂

∂y
(4T 3

∞T − 3T 4
∞)

= −4σ∗

3k∗
∂

∂y
(4T 3

∞T )

= −16σ∗

3k∗
T 3
∞
∂T
∂y

.

⇒ ∂qr
∂y

= −16σ∗

3k∗
T 3
∞
∂2T
∂y2

= −16σ∗

3k∗
T 3
∞

(
b2

νf
xθ′′(Ω)

)
. (3.26)

The governing equation for the conservation of energy takes the following form:

B1
∂T
∂x

+B2
∂T
∂y

=
1

(ρCp)hnf

(
khnf

(∂2T
∂y2

)
+ µhnf

(∂B1

∂y

)2
− ∂qr
∂y

)

− λ0

(
B1
∂B1

∂x

∂T
∂x

+B2
∂B2

∂y

∂T
∂y

+B1
∂B2

∂x

∂T
∂y

+B2
∂B1

∂y

∂T
∂x

+B2
1

∂2T
∂x2

+B2
2

∂2T
∂y2

+ 2B1B2
∂2T
∂x∂y

)

⇒
(
bxf ′(Ω)

)(
bθ(Ω)

)
+

(
− f(Ω)

√
νfb

)(
bxθ′(Ω)

(√ b

νf

))
=

1

(ρCp)hnf

(
khnf

(b2x
νf
θ′′(Ω)

)
+ µhnf

(b3x2
νf

(f ′′(Ω))2
)
+

16σ∗

3k∗
T 3
∞

( b2
νf
xθ′′(Ω)

))

− λ0

(
(bxf ′(Ω))

(
f ′(Ω)b

)(
bθ(Ω)

)
+
(
−
√
νfbf(Ω)

)(
− bf ′(Ω)

)(
bx

√
b

νf
θ′(Ω)

)
+ 0 +

(
−
√
νfbf(Ω)

)(
bx

√
b

νf
f ′′(Ω)

)(
bθ(Ω)

)
+ 0 +

(
f(Ω)

)2(
bνf
)( b2
νf
xθ′′(Ω)

)
+
(
2bxf ′(Ω)

)(
−
√
νfbf(Ω)

)(
b

√
b

νf
θ(Ω)

))

⇒
(
b2xf ′(Ω)θ(Ω)

)
−
(
b2xf(Ω)θ′(Ω)

)
=

1

(ρCp)hnf

(
khnf

(b2x
νf
θ′′(Ω)

)
+ µhnf

(b3x2
νf

(f ′′(Ω))2
)
+

16σ∗

3k∗
T 3
∞

( b2
νf
xθ′′(Ω)

))
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− λ0
( (

b3x(f ′(Ω))2θ(Ω)
)
+
(
b3xf(Ω)f ′(Ω)θ′(Ω)

)
−
(
b3xf(Ω)f ′′(Ω)θ(Ω))

+
(
b3x(f(Ω))2θ′′(Ω)

)
−
(
2b3xf(Ω)f ′(Ω)θ′(Ω))

))

From Table 3.2,

κhnf =
[κp2 + (m− 1)κnf − (m− 1)ϕMT (κnf − κp2)

κp2 + (m− 1)κnf + ϕMT (κnf − κp2)

]
×
[κp1 + (m− 1)κf − (m− 1)ϕST (κf − κp1)

κp1 + (m− 1)κf + ϕST (κf − κp1)

]
κf

⇒ κhnf = ϕdκf .

(ρCp)hnf =
[
(1− ϕMT )[(1− ϕST )(ρCp)f + ϕST (ρCp)p1 ] + ϕ2(ρCp)p2

]
× (ρCp)hnf

(ρCp)hnf
= ϕc(ρCp)f .

µhnf = µf (1− ϕST )
−2.5(1− ϕMT )

−2.5.

µhnf =
µf

ϕa

.

So,

(
b2xf ′(Ω)θ(Ω)

)
−
(
b2xf(Ω)θ′(Ω)

)
=

1

ϕc(ρCp)f

(
ϕdkf

(b2x
νf
θ′′(Ω)

)
+
µf

ϕa

(b3x2
νf

(f ′′(Ω))2
)
+

16σ∗

3k∗
T 3
∞

( b2
νf
xθ′′(Ω)

))

− λ0
((
b3x(f ′(Ω))2θ(Ω)

)
+
(
b3xf(Ω)f ′(Ω)θ′(Ω)

)
−
(
b3xf(Ω)f ′′(Ω)θ(Ω))

+
(
b3x(f(Ω))2θ′′(Ω)

)
−
(
2b3xf(Ω)f ′(Ω)θ′(Ω)

))
.

⇒ ϕd

ϕc

1

Pς

(
b2xθ′′(Ω)

)
+

1

ϕaϕc(Cp)f

(
b3x2(f ′′)2

)
+Nς

1

ϕc

(
b2xθ′′(Ω)

)
− λ0

((
b3x(f ′(Ω))2θ(Ω)

)
+
(
b3xf(Ω)f ′(Ω)θ′(Ω)

)
−
(
b3xf(Ω)f ′′(Ω)θ(Ω))

+
(
b3x(f(Ω))2θ′′(Ω)

)
−
(
2b3xf(Ω)f ′(Ω)θ′(Ω)

))
+ b2xf(Ω)θ′(Ω)

− b2xf ′(Ω)θ(Ω) = 0

⇒ ϕd

ϕc

1

Pς

(
bθ′′(Ω)

)
+

Eς

ϕaϕc

(
b(f ′′(Ω)2)

)
+Nς

1

ϕc

bθ′′(Ω)− λ0
(
b2(f ′)2θ(Ω)

+ b2f(Ω)f ′(Ω)θ′(Ω)− b2f(Ω)f ′′(Ω)θ(Ω) + b2(f(Ω))2θ′′(Ω)

− 2b2f(Ω)f ′(Ω)θ′(Ω)

)
bf(Ω)θ′(Ω)− bf ′(Ω)θ(Ω) = 0.
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⇒ ϕd

ϕc

1

Pς

(
θ′′(Ω)

)(
1 +

1

ϕd

PςNς

)
+

Eς

ϕaϕc

(
(f ′′(Ω)2)

)
− ϵς

(
(f ′)2θ(Ω)

+ f(Ω)f ′(Ω)θ′(Ω)− f(Ω)f ′′(Ω)θ(Ω) + (f(Ω))2θ′′(Ω)

− f(Ω)f ′(Ω)θ′(Ω)

)
f(Ω)θ′(Ω)− f ′(Ω)θ(Ω) = 0.

⇒
(
1 +

1

ϕd

PςNς

)
θ′′ +

ϕc

ϕd

Pς

(
fθ′ − f ′θ +

Eς

ϕaϕc

(f ′′)2

− ϵς
(
(f ′)2θ − ff ′θ′ − ff ′′θ + f 2θ′′

))
= 0. (3.27)

The dimensionless parameters used in equation (3.27) are:

ϵς = λ0(b), αf =
κf

(ρCp)f
, Pς =

νf
αf
,

Eς =
U3
w

(Cp)f (Tw−T∞)
, Nς =

16σ∗

3κ∗
T 3
∞

νf (ρCp)f
.

The related BCs are converted into the dimensionless form by the following pro-

cedure. Firstly when y=0 which implies Ω=0

B1(x, 0) = Uw +Nς

(∂B1

∂y

)
,

⇒ f ′(Ω)bx = bx+Nς

(
bxf ′′(Ω)

√
b

νf

)
,

⇒ f ′(Ω)bx = bx

(
1 +Nς

√
b

νf
f ′′(Ω)

)
,

⇒ f ′(0) = 1 + Aςf
′′(0).

B2(x, 0) = Vς ,

⇒ − f(Ω)
√
νfb = Vς ,

⇒ − f(Ω) = Vς√
νfb

,

⇒ − f(0) = Vς√
νfb

⇒ f(0) = S,

− κs
[∂T
∂y

]
= hς(Tw − T ),

⇒ − κs
(
θ′

√
b

νf

(Tw − T∞)

)
= hς

(
T∞ − T

)
,
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⇒ θ′ =
hς
(
Tw − T

)
−κs

√
b
νf

(
Tw − T∞

) ,
⇒ θ′(Ω) = −Hς

(
Tw −

(
(Tw − T∞)θ(Ω) + T∞

)
Tw − T∞

)
,

⇒ θ′(Ω) = −Hς

(
(Tw − T∞)−

(
(Tw − T∞)θ(Ω)

)
Tw − T∞

)
,

⇒ θ′(0) = −Hς(1− θ(0)).

Now choose y→∞ =⇒ Ω→∞

B1 → 0,

⇒ f ′(Ω)→ 0,

T → T∞,

⇒ θ(Ω)→ 0

The final dimensionless form of the governing equations along with the converted

boundary conditions are

A∗
1f

′′′(Ω)
(
1− A∗

2f
′′(Ω)2

)
+ ϕb

(
f(Ω)f ′′(Ω)− f ′(Ω)2

)
− 1

ϕa

Kςf
′(Ω) = 0, (3.28)

(
1 +

1

ϕd

PςNς

)
θ′′ +

ϕc

ϕd

Pς

(
fθ′ − f ′θ +

Eς

ϕaϕc

(f ′′)2 − ϵς
(
(f ′)2θ − ff ′θ′

− ff ′′θ + f 2θ′′
))

= 0 (3.29)

f(0) = S, f ′(0) = 1 + Aςf
′′(0), f ′(Ω)→ 0, as Ω→∞,

θ′(0) = −Hς(1− θ(0)), θ(Ω)→ 0, as Ω→∞.

 (3.30)

3.2.7 Some Dimensionless Quantities

The skin friction coefficient, is given as follows,

Cf =
τw

1
2
ρfU2

w

, (3.31)
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where

τw =

(
Ad

C

∂B1

∂y
+

Ad

6C3

(∂B1

∂y

)3)
y=0

. (3.32)

Therefore

Cf =

(
Ad

C
bxf ′′(Ω)

√
b
νf

+ Ad

6C3 b
3x3
(
f ′′(Ω)

)3(√ b
νf

)3)
y=0

1
2
ρf (bx)2

=

(
Ad

C
bxf ′′(Ω)

√
b
νf

+ Ad

6C3 b
3x3
(
f ′′(Ω)

)3(√ b
νf

)3)
y=0

1
2

µf

νf
(bx)(bx)

=

(
Ad

C
bxf ′′(Ω)

√
b
νf

+ Ad

6C3 b
3x3
(
f ′′(Ω)

)3(√ b
νf

)3)
y=0

1
2
Rexµfb

=

(
Ad

µfC
xf ′′(Ω)

√
b
νf

+ Ad

µfC
b2x3

6C2

(
f ′′(Ω)

)3(√ b
νf

)3)
1
2
Rex

=

(
A∗

1f
′′(Ω)x

√
b
νf

+ A∗
1
b2x3

6C2

(
f ′′(Ω)

)3(√ b
νf

)3)
1
2
Rex

1

2
CfRex = x

√
b

νf

(
A∗

1f
′′(Ω) + A∗

1

b2x2

6C2

(
f ′′(Ω)

)3(√ b

νf

)2)
1

2
CfRex =

√
Rex

(
A∗

1f
′′(Ω) +

1

3
A∗

1A
∗
2

(
f ′′(Ω)

)3)
1

2
Cf (Rex)

1
2 =

(
A∗

1f
′′(Ω) +

1

3
A∗

1A
∗
2

(
f ′′(Ω)

)3)
⇒ Cf (Rex)

1
2 =

(
2A∗

1f
′′(Ω) +

2

3
A∗

1A
∗
2

(
f ′′(Ω)

)3)
. (3.33)

Here Rex = Uwx
νf

denotes the local Reynolds number.

Nusselt number is defined as follows.

Nux =
xqw

κf (Tw − T∞)
. (3.34)

The dimensionless form of Nux is produced by the following steps:
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qw = −κhnf
(
1 +

16σ∗T 3
∞

3k∗νf (ρCp)f

)(∂T
∂y

)
y=0

. (3.35)

Nux = −
xκhnf

(
1 + 16σ∗T 3

∞
3k∗νf (ρCp)f

)(
∂T
∂y

)
y=0

κf (Tw − T∞)

= −
κhnf

(
1 + 16σ∗T 3

∞
3k∗νf (ρCp)f

)
xθ′(0)

√
b
νf

κf

= −
κhnf

(
1 + 16σ∗T 3

∞
3k∗νf (ρCp)f

)√
x
√
xθ′(0)

√
b
νf

κf

= −
κhnf

(
1 + 16σ∗T 3

∞
3k∗νf (ρCp)f

)
θ′(0)

√
bxx
νf

κf

= −
κhnf

(
1 + 16σ∗T 3

∞
3k∗νf (ρCp)f

)
θ′(0)

√
Uwx
νf

κf

⇒ NuxRe
− 1

2
x = −κhnf

κf
(1 +Ns)θ′(0). (3.36)

The entropy generation rate NG is defined as:

NG =
T 2
∞b

2EG

κf (Tw − T∞)2
. (3.37)

The dimensionless form of NG can be produced through the following steps:

EG =
κhnf
T 2
∞

((∂T
∂y

)2
+

16

3

σ∗T 3
∞

k∗νf (ρCp)f

(∂T
∂y

)2)
+
µhnf

T∞

(∂B1

∂y

)2
+
µhnfB

2
1

kT∞
.

(3.38)

∴ NG =
T 2
∞b

2

κf (Tw − T∞)2

(
khnf
T 2
∞

((
bxθ′

√
b

νf

)2
+

16

3

σ∗T 3
∞

k∗νf (ρCp)f

(
bxθ′

√
b

νf

)2)

+
µhnf

T∞
(
bxf ′′

√
b

νf

)2
+
µhnf

kT∞
(bxf ′)2

)

NG =
b2

κf (Tw − T∞)2

(
khnf

((
b2x2(θ′)2

b

νf

)
+Nς

(
b2x2(θ′)2

b

νf

))

+ T∞µhnf

(
b2x2(f ′′)2

b

νf

)
+
T∞µhnf

k
b2x2(f ′)2

)
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NG =
1

κf (Tw − T∞)2
khnf

((
b5x2(θ′)2
νf

)
[1 +Nς ]

+ T∞µhnf

(b5x2(f ′′)2

νf

)
+
T∞µhnf

k
b4x2(f ′)2

)

=
Re

κf (Tw − T∞)2

(
khnf (b

2x2(θ′)2(1 +Nς) + T∞µhnf (b
2x2(f ′′)2)

+
T∞µhnf

k
νfbx

2(f ′)2

)

= Re

(
ϕd(1 +Nς)(θ

′)2 +
T∞µfb

2x2(f ′′)2

ϕaκf (Tw − T∞)2
+
T∞µfνfbx

2(f ′)2

ϕaκfk(Tw − T∞)2

)

= Re

(
ϕd(1 +Nς)(θ

′)2 +
µfb

2x2

ϕaκf (Tw − T∞)

(
T∞

Tw − T∞
(f ′′)2 +

T∞νf (f ′)2

kb(Tw − T∞)

))

= Re

(
ϕd(1 +Ns)θ′2 +

1

ϕa

Bs

η

(
f ′′2 +

νf
kb

(f ′)2
))

NG = Re

(
ϕd(1 +Ns)θ′2 +

1

ϕa

Bs

η

(
f ′′2 +Kς(f

′)2
))
. (3.39)

where Re =
Uwb2

νfx
, Bς =

µfU
2
w

κf (Tw−T∞)
, and η = (Tw−T∞)

T∞ denote the Reynolds number,

Brinkmann number and dimensionless temperature gradient respectively.

3.3 Numerical Method for Solution

Since equation (3.28) is independent of θ. Hence it can be solved independently

by using the shooting technique.

f ′′′ =
Kςf

′

ϕaA∗
1

(
1− A∗

2f
′′2
) − ϕb

(
ff ′′ − f ′2)

A∗
1

(
1− A∗

2f
′′2
) . (3.40)

The following notations are used for this purpose:

f = J1,

f ′ = J ′
1 = J2,

f ′′ = J ′′
1 = J ′

2 = J3.
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The momentum equation is then turned into the system of first-order ODEs rep-

resented follows.

J ′
1 = J2, J1(0) = S.

J ′
2 = J3, J2(0) = 1 + AςJ3(0).

J ′
3 =

KςJ2

ϕaA∗
1

(
1− A∗

2J
2
3

) − ϕb

(
J1J3 − J2

2

)
A∗

1

(
1− A∗

2J
2
3

) , J3(0) = q.

The Runge-Kutta technique of order four will be used to solve the above IVP.

The domain of the problem is to be bounded. i.e. [0, Ω∞], where Ω∞ is a +ve

real number. In this flow prolem Ω∞ is taken as 6.The missing condition q is to

be selected such that.

J2(Ω∞, q) = 0.

To determine q, Newton’s technique will be utilised. The iterative technique for

this method is as follows:

qn+1 = qn −
J2(Ω∞, qn)

( ∂
∂q
J2(Ω∞, q))q=qn

.

To incorporate the above iterative scheme we further need the following derivatives.

∂J1
∂q

= J4,

∂J2
∂q

= J5,

∂J3
∂q

= J6.

As a consequence of such new notations, Newton’s iterative technique took the

following form:

qn+1 = qn −
J2(Ω∞, qn)

J5(Ω∞, qn)
, n = 0, 1, 2, 3, .....

Differentiating the above system of three first order ODEs with regard to q yields
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the following system of ODEs.

J ′
4 = J5, J4(0) = 0.

J ′
5 = J6, J5(0) = Aς .

J ′
6 =

2A∗
1A

∗
2J3J6(

A∗
1 − A∗

1A
∗
2J

2
3

)2((KςJ2
ϕa

)
− ϕb

(
J1J3 − J2

2

))
+
(KςJ5
ϕa

)
− ϕb

(
J1J6 + J3J4 − 2J2J5

)( 1

A∗
1 − A∗

1A
∗
2J

2
3

)
, J6(0) = 1.

Following stopping criteria is used for Newton’s Method.

| J2(Ω∞, q) |< ϵ,

where ϵ > 0 is a suitable small value, which are taken to be 10−5.

To solve (3.29) numerically, shooting method is used. This equation contains two

dependent variable θ and f . Solution of f is incorporated numerically to solve

(3.29).

More precisely the shooting approach is used to approximate the ordinary differ-

ential equation (3.29), assuming f as a known function.

θ′′ =
1

1 + PςNς

ϕd
− ϵς(f 2)ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
fθ′ − f ′θ +

Eς

ϕaϕc

f ′′2

− ϵς
(
f ′2θ − ff ′θ′ − ff ′′θ

)))
. (3.41)

Following notations are used.

θ = L1,

θ′ = L′
1 = L2.

The energy equation (3.41) is then transformed into the system of first-order

ODEs shown below.

L′
1 = L2, L1(0) = r.
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L′
2 =

1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L2 − J2L1 +

Eς

ϕaϕc

J2
3

− ϵς
(
J2
2L1 − J1J2L2 − J1J3L1

)))
, L2(0) = −Hς(1− L1(0)).

The above IVP will be solved using the Runge-Kutta technique of order four. The

missing condition r is to selected in such a way that.

L1(Ω∞, r) = 0.

The above equation can be solved by using Newton’s method for the value with

the following iterative formula.

rn+1 = rn −
L1(Ω∞, rn)

( ∂
∂r
L1(Ω∞, r))r=rn

. n = 0, 1, 2, 3, ....

Introduce the notations shown below:

∂L1

∂r
= L3,

∂L2

∂r
= L4.

As a result of these new notations, the Newton’s iterative scheme gets the form:

rn+1 = rn −
L1(Ω∞, rn)

L3(Ω∞, rn)
.

Now differentiating the system of two first order ODEs with respect to r, we get

another system of ODEs, as follows.

L′
3 = L4, L3(0) = 1.

L′
4 =

1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς(

− Pς ϕc

ϕd

×
(
J1L4 − J2L3 − ϵς

(
J2
2L3 − J1J2L4 − J1J3L3

)))
, L4(0) = Hς .

The stopping criteria for the Newton’s method is set as:

| L1(Ω∞, r) |< 10−5.
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3.4 Representation of Graphs and Tables

A thorough discussion on the graphs and tables is conducted which contains the

impact of dimensionless parameters on the skin friction coefficient (Rex)
1
2Cf and

local Nusselt number (Rex)
−1
2 Nux. Tables 3.3 and 3.4 explains the impact of pa-

rameter A∗
1, A

∗
2, porosity parameter Kς , nanoparticle volume fractions ϕST , ϕMT ,

velocity slip Aς , injection parameter S, thermal radiation parameter Nς , relaxation

time parameter ϵς and Biot number Hς on (Rex)
1
2Cf .

For the rising values of ϕST and ϕMT , the skin fraction coefficient (Rex)
1
2Cf

decreases. In Tables 3.5 and 3.6, the effect of significant parameters on local

Nusselt number (Rex)
−1
2 Nux has been discussed. The rising pattern is found in

(Rex)
−1
2 Nux due to increasing values of A∗

1.

3.4.1 Influence of Prandtl-Eyring Parameter A∗1

Figures 3.2, 3.3 and 3.4 show the impact of the Prandtl-Eyring parameter A∗
1 on

the velocity f ′(Ω), energy θ(Ω) and entropy generation NG of PEHNF. Velocity

fluctuation f ′(Ω) for increasing value of A∗
1 is shown in Figure 3.2. As the value

of A∗
1 is increased the velocity profile is increased for both fluid. The physical

cause of this phenomenon is that, the increased value of A∗
1 reduce the viscosity

which inturns reduce resistance while increasing fluid velocity. MWCNT-SWCNT

hybrid nanofluid, accelerates more quickly than SWCNT nanofluid. It is explained

by the fact that the hybrid nanofluid has a much greater density impact than the

nanofluid.

The energy θ(Ω) for the Prandtl–Eyring parameter A∗
1 is shown in Figure 3.3. Due

to the increased value of A∗
1, the MWCNT-SWCNT hybrid nanofluid has a higher

temperature profile, whereas the SWCNT nanofluid has a lower temperature pro-

file. Another observation is that the hybrid nanofluid has significantly less thermal

conductivity than pure nanofluid. Prandtl-Eyring hybrid nanofluid entropy fluc-

tuation NG based on its parameterA∗
1 is depicted in Figure 3.4. As the value of A∗

1

increases, the amount of entropy generation decreased. MWCNT-SWCNT fluid
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have a higher entropy profile than SWCNT hybrid nanofluid. This phenomena

occurs due to the reason that less temperature slows down the motion of hybrid

nanofluid which causes decrease in entropy generation.

3.4.2 Influence of Prandtl-Eyring Parameter A∗2

The impact of Prandtl-Eyring ParameterA∗
2 on the Prandtl-Eyring hybrid nanofluid

velocity, temperature, and entropy generation profile is shown in Figure 3.5 to Fig-

ure 3.7.

Figure 3.5 displays the impact of increasing A∗
2 on velocity profile of fluid. Resis-

tance is produced by hybrid nanofluid particles because they vary inversely with

momentum diffusivity. As a result, the velocity of the flow is reduced.

Figure 3.6 indicates the temperature change with respect to Prandtl-Eyring pa-

rameter A∗
2. As the value of A∗

2 increases temperature profile decreases.

Figure 3.7 exhibits the entropy change as a function of the Prandtl-Eyring pa-

rameter A∗
2. The entropy profile increases as the value of A∗

2 is increased, which

clearly demonstrating a relationship between entropy and A∗
2. It indicates that A

∗
2

enhance the system’s obstacle by increasing the entropy of the system.

3.4.3 Impact of Porous Media Variable Kς.

Figures 3.8, 3.9, and 3.10 show that surface porousness has an impact on flow rate,

heat domain, and entropy generation.

In Figure 3.8 raising the value of Kς , porousity of the surface is enhanced, which

allows more fluid to pass through. In comparison to SWCNT/EO nanofluid, the

hybrid nanofluid moves slowly across the porous medium. This slow speed may

be caused by the extra particles delaying the flow of the hybrid nanofluid through

the porous surface.

Figure 3.9 illustrates that by increasing the porous medium variable (Kς) , the

temperature dispersion is improved throughout the domain of fluid. Due to the
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porous medium the flow is slowed down and surface needs more time to absorb

the heat.

Figure 3.10 shows the impact ofKς on entropy generation, by enhancing the values

of Kς the entropy profile also increases.

3.4.4 Impact of Velocity Slip Variable Aς.

The effects of enhanced slip conditions on flow nature, thermal characteristics, and

entropy formation are reviewed through Figures 3.11 , 3.12, and 3.13.

These figures illustrate the impact of Aς on f ′(Ω), θ(Ω) and NG. The flow con-

ditions in the hybrid Prandtl-Eyring fluid are primarily focused on the viscous

behavior as shown in Figure 3.11. This occurrence in fluids makes slip condi-

tions extremely important. The viscous properties and higher number of flow slip

parameter in a hybrid Prandtl-Eyring nanofluid lead to complicated fluidity con-

ditions, which causes the fluidity of the single nanofluid to drop quickly.

The MWCNT-SWCNT/EO nanofluid maintains a higher temperature state than

SWCNT/EO hybrid nanofluid, as shown in Figure 3.12. The decrease in ve-

locity will have a similar impact on the increase in boundary layer viscosity.

The nanofluid has lower viscosity than the hybrid nanofluid. Hence MWCNT-

SWCNT/EO is expected to have a higher temperature than SWCNT-EO.

In Figure 3.13 higher slip parameter shows a descending trend in entropy formation

because the slipped flow acts against the domain’s entropy formation.

3.4.5 Influence of Thermal Radiative Parameter Nς and

Relaxation Time Parameter ϵς.

Figures 3.14 and 3.15 describes the thermal diffusion and entropy generation while

raising the value of thermal radiative parameter Nς .

In Figure 3.14 temperature is raised by increasing the values of Nς . Physical
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reason of temperature increase is that thermal radiation are transformed into elec-

tromagnetic energy, as a result, radiation is emitted from a greater distance, away

from the surface, ultimately superheating the boundary layer flow. Therefore, the

thermal radiative variable plays a significant role in determining the temperature

profile of the system.

Impact of Nς on entropy generation is illustrated in Figure 3.15. MWCNT-

SWCNT hybrid nanofluid have higher entropy profile than SWCNT nanofluid.

This occurrence can be clarified by the system’s irreversible heat transfer mecha-

nism.

Figures 3.16 and 3.17 displays the impact of ϵς on the temperature and entropy.

In Figure 3.16, rising the values of ϵς , the temperature profile decreases.

Figure 3.17 shows the engine oil based entropy profile, when value of ϵς increases

entropy profile also increases.

3.4.6 Effect of the Solid Particle Shape m.

Nanoparticles have enhanced thermal conductivity and heat transfer rates under

various physical conditions. In porous medium it is very difficult to handle these

nano particles. The forms assumed here are ranged from spherical (m=3) to lamina

(m=16.176).

Figure 3.18 shows the impact of shape factor m on the temperature. By rising

the values of m, the temperature profile decreases. The MWCNT-SWCNT with

base fluid EO has a more notable impact than SWCNT with base fluid EO. In

comparison to nanofluid, hybrid nanofluid has a wider thermal layer of boundary

and better thermal distribution.

In the MWCNT-SWCNT with base fluid EO, the lamina (m=16.176) shaped

particles remain in front of the other particles. The physical explanation for this

phenomenon is that lamina-shaped particles exhibit the most notable viscosity,

whereas spheres exhibit the least viscosity.

Figure 3.19 describes the influence of shape factor m on the entropy. Increasing
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values of m increased entropy generation.

In comparison to SWCNT-EO mono nanofluid, MWCNT-SWCNT/EO NHF have

a more significant impact and higher entropy rate.

3.4.7 Impact of Entropy for Reynolds Number (Re) and

Brinkman Number (Bς).

Figure 3.20 shows the influence of Reynolds number Re, on NG. Entropy profile

NG is increased by increasing the value of Re.

All Reynolds number supports nanoparticles to move in porous media due to iner-

tia on viscous forces in the system. Due to the combined effeciency of the particles

entropy rate of MWCNT-SWCNT/EO is higher than SWCNT/EO nanofluid.

Figure 3.21 shows the impact of Brinkmann amount Bς , on NG. By increasing

values of Bς , the entropy profile NG) is increased.

The Brinkman number (Bς) are used to depicts the heat generated by viscous

properties as viscous properties increase the generated heat. Ability of such vis-

cous properties enhanced heat that promotes entropy generation in system.

Table 3.3: Results of (Rex)
1
2Cf for various parameters, Pς= 6450

A∗
1 A∗

2 Kς ϕST ϕMT Aς S Nς ϵς Hς (Rex)
1
2Cf

SWCNT

1.0 0.4 0.1 0.18 0.09 0.3 0.4 0.3 0.2 0.3 -2.4151

1.1 -2.5093

1.2 -2.6016

0.2 -2.1406

0.4 -2.4151

0.6 -2.8523
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A∗
1 A∗

2 Kς ϕST ϕMT Aς S Nς ϵς Hς (Rex)
1
2Cf

SWCNT

0.1 -2.4151

0.15 -2.4803

0.18 -2.5189

0.09 -2.2102

0.15 -2.3461

0.18 -2.4151

0.0 -

0.06 -

0.09 -

0.27 -2.5682

0.30 -2.4151

0.33 -2.4151

0.2 -2.2847

0.4 -2.3148

0.6 -2.4151

0.2 -2.7454

0.3 -2.4151

0.4 -2.4151

0.1 -2.4151

0.2 -2.4151

0.3 -2.4151

0.1 -2.4151

0.3 -2.4151

0.5 -2.4151
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Table 3.4: Results of (Rex)
1
2Cf for various parameters, Pς= 6450

A∗
1 A∗

2 Kς ϕST ϕMT Aς S Nς ϵς Hς (Rex)
1
2Cf

MWCNT

1.0 -2.4906

1.1 -2.5861

1.2 -2.6798

0.2 -2.1937

0.4 -2.4906

0.6 -2.9851

0.1 -2.4906

0.15 -2.5718

0.18 -2.6199

0.09 -2.2953

0.15 -2.4243

0.18 -2.4906

0.0 -2.4151

0.06 -2.4642

0.09 -2.4906

0.27 -2.6553

0.30 -2.4906

0.33 -2.3514

0.2 -2.1987

0.4 -2.4906

0.6 -2.8376

0.2 -2.4906

0.3 -2.4906

0.4 -2.4906

0.1 -2.4906

0.2 -2.4906

0.3 -2.4906

0.1 -2.4906

0.3 -2.4906

0.5 -2.4906
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Table 3.5: Results of Nu(Rex)
−1
2 for various parameters, Pς= 6450

A∗
1 A∗

2 Kς ϕST ϕMT Aς S Nς ϵς Hς Nu(Rex)
−1
2

SWCNT

1.0 0.1796

1.1 0.1815

1.2 0.1833

0.2 0.1799

0.4 0.1796

0.6 0.1799

0.1 0.1796

0.15 0.1786

0.18 0.1781

0.09 0.2444

0.15 0.1994

0.18 0.1796

0.0 -

0.06 -

0.09 -

0.27 0.1779

0.30 0.1796

0.33 0.1811

0.2 0.1566

0.4 0.1796

0.6 0.1872

0.2 0.1899

0.3 0.1688

0.4 0.1796

0.1 0.1751

0.2 0.1796

0.3 0.1836

0.1 0.0637

0.3 0.1796

0.5 0.2823
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Table 3.6: Results of Nu(Rex)
−1
2 for various parameters, Pς= 6450

A∗
1 A∗

2 Kς ϕST ϕMT As S Nς ϵς Hς Nu(Rex)
−1
2

MWCNT

1.0 0.1650

1.1 0.1674

1.2 0.1696

0.2 0.1654

0.4 0.1650

0.6 0.1658

0.1 0.1650

0.15 0.1636

0.18 0.1629

0.09 0.2311

0.15 0.1852

0.18 0.1650

0.0 0.1796

0.06 0.1702

0.09 0.1650

0.27 0.1627

0.30 0.1650

0.33 0.1670

0.2 0.1567

0.4 0.1650

0.6 0.1734

0.2 0.1749

0.3 0.1545

0.4 0.1650

0.1 0.1601

0.2 0.1650

0.3 0.1695

0.1 0.0586

0.3 0.1650

0.5 0.2591
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Figure 3.2: Impact of velocity against A∗
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Figure 3.3: Impact of temperature against A∗
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Figure 3.4: Impact of entropy against A∗
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Figure 3.5: Impact of velocity against A∗
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Figure 3.6: Impact of temperature against A∗
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Figure 3.8: Impact of velocity against Kς
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Figure 3.9: Impact of temperature against Kς
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Figure 3.10: Impact of entropy against Kς
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Figure 3.11: Impact of velocity against Aς
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Figure 3.12: Impact of temperature against Aς
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Figure 3.13: Impact of entropy against Aς
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Figure 3.14: Impact of temperature against Nς
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Figure 3.16: Impact of temperature against ϵς
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Figure 3.17: Impact of entropy against ϵς
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Figure 3.18: Impact of temperature against m
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Figure 3.20: Impact of entropy against Re
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Chapter 4

Heat and Mass Transfer for

Prandtl-Eyring Hybrid Nanofluid

4.1 Introduction

Bio-convection is natural phenominon that occurs by random movement in single-

cell or colony like microorganisms. The model discussed in chapter 3 is extended

by discussing the motion of microorganisms. Furthermore concentration equation

is also added in this model to discuss the mass transfer. In this chapter, we will

conduct a numerical study of the flow, heat transfer, heat and mass transfer of

the Prandtl-Eyring hybrid nanofluid.

4.2 Mathematical Modeling

The Prandtl-Eyring hybrid nanofluid is used to extend the problem considered in

Chapter 3. The geometry of problem is given in Figure (3.1). The flow is discussed

using continuity, momentum, energy, concentration, and motile microorganism

equation.

58
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4.2.1 Governing Equations

The set of equations describing the flow are as follows.

∂B1

∂x
+
∂B2

∂y
= 0, (4.1)

B1
∂B1

∂x
+B2

∂B2

∂y
=

Ad

Cρhnf

(
∂2B1

∂y2

)
− Ad

2C3ρhnf

∂2B1

∂y2

(
∂B1

∂y

)2

− µhnf

ρhnfk
B1 (4.2)

B1
∂T
∂x

+B2
∂T
∂y

=
1

(ρCp)hnf

(
khnf

(∂2T
∂y2

)
+ µhnf

(∂B1

∂y

)2
− ∂qr
∂y

)

− λ0

(
B1
∂B1

∂x

∂T
∂x

+B2
∂B2

∂y

∂T
∂y

+B1
∂B2

∂x

∂T
∂y

+B2
∂B1

∂y

∂T
∂x

+B2
1

∂2T
∂x2

+B2
2

∂2T
∂y2

+ 2B1B2
∂2T
∂x∂y

)
, (4.3)

B1
∂C

∂x
+B2

∂C

∂y
=
∂2C

∂y2
DB +

(
∂2T
∂y2

)
DT

T∞
+ kr

(
C∞ − C

)
, (4.4)

B2
∂N

∂y
+B1

∂N

∂x
= Dm

∂2N

∂y2
+

bw(
C∞ − Cw

) ∂
∂y

(
N
∂C

∂y

)
. (4.5)

The associated BCs are taken as from [35, 36].

B1(x, 0) = Uw +Nς

(∂B1

∂y

)
, B2(x, 0) = Vς , − kς

(∂T
∂y

)
= hς(T w − T ),

Cw = C, Nw = N. (4.6)

B1 → 0, T → T∞, C∞ = C, N∞ = N as y →∞. (4.7)

C∞ is ambient concentration and N∞ is ambient motile microorganism.

For the conversion of the mathematical model (4.1)-(4.5) into the system of ODEs,

the following similarity transformation are used which are taken from [22, 23].

Ω(x, y) =

√
b

νf
y, θ(Ω) =

T − T∞
Tw − T∞

,

ψ =
√
νfbxf(Ω), Φ(Ω) =

C∞ − C
C∞ − Cw

,

χ(Ω) =
N −N∞

Nw −N∞


(4.8)
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The identical satisfaction of (4.1) is already discussed and (4.2),(4.3) are also

discussed in chapter 3.

The governing equation of conservation of concentration(4.4) is

B1
∂C

∂x
+B2

∂C

∂y
=
∂2C

∂y2
DB +

(
∂2T
∂y2

)
DT

T∞
+ kr

(
C∞ − C

)
.

Φ(Ω) =
C∞ − C
C∞ − Cw

C = C∞ − Φ(Ω)
(
C∞ − Cw

)
(4.9)

B1 = bxf ′(Ω) (4.10)

B2 = −
√
νfbf(Ω) (4.11)

∂C

∂x
=

∂

∂x

(
C∞ − Φ(Ω)

(
C∞ − Cw

))
∂C

∂x
= 0 (4.12)

∂C

∂y
=

∂

∂y

(
C∞ − Φ(Ω)

(
C∞ − Cw

))
∂C

∂y
=

(
−
(
C∞ − Cw

)
Φ′(Ω)

√
b

νf

)
(4.13)

∂2C

∂y2
=

(
−
(
C∞ − Cw

)
Φ′′(Ω)

b

νf

)
(4.14)

∂2T
∂y2

=
b2

νf
xθ′′(Ω) (4.15)

Now, the dimensionless form of the concentration equation can be obtained by

using (4.9)-(4.15)

√
νfbf(Ω)

((
C∞ − Cw

)
ϕ′(Ω)

√
b

νf

)
=

(
−
(
C∞ − Cw

)
Φ′′(Ω)

b

νf

)
DB

+
b2

νf
xθ′′(Ω)

DT

∞
+ kr

(
C∞ − C

)
⇒ b

(
C∞ − Cw

)
f(Ω)θ′(Ω) =

(
−
(
C∞ − Cw

)
Φ′′(Ω)

b

νf

)
DB

+
b2

νf
xθ′′(Ω)

DT

∞
+ kr

(
C∞ − C

)
⇒

(
−
(
C∞ − Cw

)
Φ′′(Ω)

b

νf

)
DB +

b2

νf
xθ′′(Ω)

DT

∞

+ kr
(
C∞ − C

)
− b
(
C∞ − Cw

)
f(Ω)θ′(Ω) = 0
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⇒ θ′′(Ω) +

(
b2

νf

) 
DTxθ′′(Ω)
T ∞

( νf

−
(
C∞ − Cw

)
bDB

)
+ kr

(
C∞ − C

)
(

νf

−
(
C∞ − Cw

)
bDB

)
− b
(
C∞ − Cw

)
f(Ω)θ′(Ω)

(
νf

−
(
C∞ − Cw

)
bDB

)
= 0

⇒ Φ′′(Ω) +
Nt

Nb

θ′′(Ω) + Lef(Ω)Φ
′(Ω) + kr

(
C∞ − C

)( νf

−
(
C∞ − Cw

)
bDB

)
= 0

⇒ Φ′′(Ω) +
Nt

Nb

θ′′(Ω) + Lef(Ω)Φ
′(Ω)− kr

b
Φ(Ω)Le = 0

Φ′′(Ω) + Lef(Ω)Φ
′(Ω) +

Nt

Nb

θ′′(Ω)− γΦ(Ω) = 0 (4.16)

The following dimensionless parameters are used in equation (4.16),

Le =
νf
DB

, Nt =

(
Tw−T ∞

)
τDT

νfT ∞ , Nb =
τDB

(
Cw−C−∞

)
νf

,

Φ(Ω) = C∞−C
C∞−Cw

, γ = kr
b
Le.

Now, for the conversion of motile microorganism equation (4.5) the following

derivates are required.

χ(Ω) =
N −N∞

Nw −N∞

N = χ(Ω)
(
Nw −N∞

)
+N∞ (4.17)

∂N

∂x
= 0 (4.18)

∂N

∂y
=

√
b

νf

(
Nw −N∞

)
χ′(Ω) (4.19)

∂2N

∂y2
=
(
Nw −N∞

)
χ′′(Ω)

b

νf
(4.20)

N
∂C

∂y
=
(
χ(Ω)

(
Nw −N∞

)
+N∞)

((
−
(
C∞ − Cw

)
Φ′(Ω)

√
b

νf

)

N
∂C

∂y
= −

(
C∞ − Cw

)(
Nw −N∞

)√ b

νf

(
χ(Ω)Φ′(Ω)

)
−N∞

(
C∞ − Cw

)√ b

νf

(
Φ′(Ω)

)
(4.21)

∂

∂y

(
N
∂C

∂y

)
= −

(
C∞ − Cw

)(
Nw −N∞

)(
Φ′(Ω)χ′(Ω)

b

νf
+ χ(Ω)Φ′′(Ω)

b

νf

)
−N∞

(
C∞ − Cw

) b
νf

Φ′′(Ω)
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∂

∂y

(
N
∂C

∂y

)
= −

(
C∞ − Cw

)(
Nw −N∞

) b
νf

(
Φ′(Ω)χ′(Ω) + χ(Ω)Φ′′(Ω)

)

−N∞
(
C∞ − Cw

) b
νf

Φ′′(Ω) (4.22)

Using (4.17)-(4.22) in governing equation for motile microorganism equation are

⇒ −
√
νfbf(Ω)

((
Nw −N∞

)
χ′(Ω)

√
b

νf

)
= Dm

((
Nw −N∞

)
χ′′(Ω)

b

νf

)

+
bwc(

C∞ − Cw

)(− (C∞ − Cw

)(
Nw −N∞

) b
νf

(
Φ′(Ω)χ′(Ω) + χ(Ω)Φ′′(Ω)

)
−N∞

(
C∞ − Cw

) b
νf

Φ′′(Ω)

)

⇒ − bf(Ω)
(
Nw −N∞

)
χ′(Ω) = Dm

((
Nw −N∞

)
χ′′(Ω)

b

νf

)

+
bwc(

C∞ − Cw

)(− (C∞ − Cw

)(
Nw −N∞

) b
νf

(
Φ′(Ω)χ′(Ω) + χ(Ω)Φ′′(Ω)

)
−N∞

(
C∞ − Cw

) b
νf

Φ′′(Ω)

)

⇒ χ′′(Ω) +
bwc(

C∞ − Cw

)( νf

b
(
Nw −N∞Dm

))(
−
(
C∞ − Cw

)(
Nw −N∞

) b
νf

(
Φ′(Ω)χ′(Ω) + χ(Ω)Φ′′(Ω)

)
−N∞

(
C∞ − Cw

) b
νf
ϕ′′(Ω)

)
+ b
(
Nw −N∞

)( νf

b
(
Nw −N∞

)
Dm

)
(
f(Ω)χ′(Ω)

)
= 0

⇒ χ′′(Ω) + Lbf(Ω)χ
′(Ω) +

(
− wcb

Dm

(
Φ′(Ω)χ′(Ω) + χ(Ω)Φ′′(Ω)

))
−
(
wcb

Dm

N∞

Nw −N∞
Φ′′(Ω)

)
= 0

⇒ χ′′(Ω) + Lbf(Ω)χ
′(Ω)− wcb

Dm

(
Φ′(Ω)χ′(Ω) + χ(Ω)Φ′′(Ω)

+
N∞

Nw −N∞
Φ′′(Ω)

)
= 0

⇒ χ′′(Ω) + Lbf(Ω)χ
′(Ω)− Pe

(
Φ′(Ω)χ′(Ω) +

(
ω + χ(Ω)

)
Φ′′(Ω)

)
= 0

⇒ χ′′(Ω) + Lbf(Ω)χ
′(Ω)−

(
Φ′(Ω)χ′(Ω) +

(
ω + χ(Ω)

)
Φ′′(Ω)

)
Pe = 0 (4.23)
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The dimensionless parameters used in (4.23) are:

Pe =
bwc

Dm
, ω = N∞

Nw−N∞ , Lb=
νf
Dm

The related BCs are converted into the dimensionless form by the following pro-

cedure. Firstly when y=0 which implies Ω=0

B1(x, 0) = Uw +Nς

(∂B1

∂y

)
,

⇒ f ′(Ω)bx = bx+Nς

(
bxf ′′(Ω)

√
b

νf

)
,

⇒ f ′(Ω)bx = bx

(
1 +Nς

√
b

νf
f ′′(Ω)

)
,

⇒ f ′(0) = 1 + Aςf
′′(0).

B2(x, 0) = Vς ,

⇒ − f(Ω)
√
νfb = Vς

⇒ − f(Ω) = Vς√
νfb

,

⇒ − f(0) = Vς√
νfb

,

⇒ f(0) = S,

− κs
[∂T
∂y

]
= hς(Tw − T ),

⇒ − κs
(
θ′

√
b

νf
(Tw − T∞)

)
= hς

(
T∞ − T

)
,

⇒ θ′ =
hς
(
Tw − T

)
−κs

√
b
νf

(
Tw − T∞

) ,
⇒ θ′(Ω) = −Hς

(
Tw −

(
(Tw − T∞)θ(Ω) + T∞

)
Tw − T∞

)
,

⇒ θ′(0) = −Hς(1− θ(0)).

Cw = C,

⇒ Φ(Ω) =
C∞ − C
C∞ − Cw

,

⇒ Φ(Ω) =
C∞ − Cw

C∞ − Cw

,
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⇒ Φ(Ω) = 1,

⇒ Φ(0) = 1.

Nw = N,

⇒ χ(Ω) =
N −N∞

Nw −N∞
,

⇒ χ(Ω) =
Nw −N∞

Nw −N∞
,

⇒ χ(Ω) = 1,

⇒ χ(0) = 1

Now choose y →∞ =⇒ Ω→∞

B1 → 0,

⇒ f ′(Ω)→ 0,

T → T∞,

⇒ θ(Ω)→ 0,

C → C∞,

⇒ Φ(Ω)→ 0,

N → N∞,

⇒ χ(Ω)→ 0,

The final dimensionless form of the governing equations along with the converted

boundary conditions are:

A∗
1f

′′′(Ω)
(
1− A∗

2f
′′(Ω)2

)
+ ϕb

(
f(Ω)f ′′(Ω)− f ′(Ω)2

)
− 1

ϕa

Kςf
′(Ω) = 0,(

1 +
1

ϕd

PςNς

)
θ′′ +

ϕc

ϕd

Pς

(
fθ′ − f ′θ +

Eς

ϕaϕc

(f ′′)2 − ϵς
(
(f ′)2θ − ff ′θ′

− ff ′′θ + f 2θ′′
))

= 0

Φ′′(Ω) + Lef(Ω)Φ
′(Ω) +

Nt

Nb

θ′′(Ω)− γΦ(Ω) = 0

χ′′(Ω) + Lbf(Ω)χ
′(Ω)−

(
Φ′(Ω)χ′(Ω) +

(
ω + χ(Ω)

)
Φ′′(Ω)

)
Pe = 0


(4.24)
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f(0) = S, f ′(0) = 1 + Aςf
′′(0), f ′(Ω)→ 0, as Ω→∞,

θ′(0) = −Hς(1− θ(0)), θ(Ω)→ 0, as Ω→∞.

Φ(0) = 1, Φ(Ω)→ 0, as Ω→∞.

χ(0) = 1, χ(Ω)→ 0, as Ω→∞.


(4.25)

4.3 Numerical Method for Solution

Equations (3.29), (4.16) and (4.23) are solved simultaneously by incorporating the

solution of (3.28) numerically.

Now the ordinary differential equations (3.29),(4.16) and (4.23) are solved using

shooting method.

Consider the following equations.

θ′′ =
1

1 + PςNς

ϕd
− ϵς(f 2)ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
fθ′ − f ′θ +

Eς

ϕaϕc

f ′′2

− ϵς
(
f ′2θ − ff ′θ′ − ff ′′θ

)))
. (4.26)

Φ′′ = γΦ(Ω)− Lef(Ω)Φ
′(Ω)− Nt

Nb

θ′′. (4.27)

χ′′ = Pe

(
χ′Φ′ +

(
ω + χ

)
Φ′′(Ω)− Lbfχ

′(Ω)

)
. (4.28)

Following notions are used for the solution.

θ = L1,

θ′ = L′
1 = L2.

Φ = L3.

Φ′ = L′
3 = L4.

χ = L5.

χ′ = L′
5 = L6.
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Above equations are then transformed into the system of first-order ODEs shown

below.

L′
1 = L2, L1(0) = r.

L′
2 =

1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L2 − J2L1 +

Eς

ϕaϕc

J2
3

− ϵς
(
J2
2L1 − J1J2L2 − J1J3L1

)))
, L2(0) = −Hς(1− L1(0)).

L′
3 = L4, L3(0) = 1.

L′
4 = γL3 − LeJ1L4 −

Nt

Nb

(
1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L2 − J2L1

+
Eς

ϕaϕc

J2
3 − ϵς

(
J2
2L1 − J1J2L2 − J1J3L1

))))
, L4(0) = m.

L′
5 = L6, L5(0) = 1.

L′
6 = Pe

[
L6L4 +

(
ω + L5

)(
γL3 − LeJ1L4 −

Nt

Nb

(
1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς(

− Pς ϕc

ϕd

×
(
J1L2 − J2L1 +

Eς

ϕaϕc

J2
3 − ϵς

(
J2
2L1 − J1J2L2 − J1J3L1

)))))

− LbJ1L6

]
, L6(0) = u.

The above IVP will be solved by Runge-Kutta method of oder four. The missing

condition r,m and u are to selected in such a way that.

L1(Ω∞, r) = 0,

L3(Ω∞,m) = 0,

L5(Ω∞, u) = 0.

The above equations are solved for r,m and u by Newton’s Method using following

itterative scheme.
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
r

m

u


(n+1)

=


r

m

u


(n)

−


∂L1

∂r
∂L1

∂m
∂L1

∂u

∂L3

∂r
∂L3

∂m
∂L3

∂u

∂L5

∂r
∂L5

∂m
∂L5

∂u


−1

(n)


L1

L3

L5


(n)

To successfully iterate the above formula we need the following:

∂L1

∂r
= L7,

∂L2

∂r
= L8,

∂L3

∂r
= L9,

∂L4

∂r
= L10,

∂L5

∂r
= L11,

∂L6

∂r
= L12.

∂L1

∂m
= L13,

∂L2

∂m
= L14,

∂L3

∂m
= L15,

∂L4

∂m
= L16,

∂L5

∂m
= L17,

∂L6

∂m
= L18.

∂L1

∂m
= L19,

∂L2

∂m
= L20,

∂L3

∂m
= L21,

∂L4

∂m
= L22,

∂L5

∂m
= L23,

∂L6

∂m
= L24.

As a result of these new notations, the Newton’s iterative scheme gets the form:


r

m

u


(n+1)

=


r

m

u


(n)

−


L7 L13 L19

L9 L15 L21

L11 L17 L23


−1

(n)


L1

L3

L5


(n)

Now differentiating the system of first order ODEs with respect to r, m, and u we

get the following system of ODEs.

L′
7 = L8, L7(0) = 1.

L′
8 =

1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς(

− Pς ϕc

ϕd

×
(
J1L8 − J2L7 − ϵς

(
J2
2L7 − J1J2L8 − J1J3L7

)))
, L8(0) = Hς .

L′
9 = L10, L9(0) = 0.

L′
10 = γL9 − LeJ1L10 −

Nt

Nb

(
1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L8 − J2L7

− ϵς
(
J2
2L7 − J1J2L8 − J1J3L7

))))
, L10(0) = 0.

L′
11 = L12, L11(0) = 0.
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L′
12 = Pe

[
L6L10 + L4L12 + L11

(
γL9 − LeJ1L10 −

Nt

Nb

( 1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς(

− Pς ϕc

ϕd

×
(
J1L8 − J2L7 − ϵς

(
J2
2L7 − J1J2L8 − J1J3L7

)))))]
− LbJ1L12, L12(0) = 0.

L′
13 = L14, L13(0) = 0.

L′
14 =

1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L14 − J2L13

− ϵς
(
J2
2L13 − J1J2L14 − J1J3L13

)))
, L14(0) = 0.

L′
15 = L16, L15(0) = 0.

L′
16 = γL15 − LeJ1L16 −

Nt

Nb

(
1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L14

− J2L13 − ϵς
(
J2
2L13 − J1J2L14 − J1J3L13

))))
, L16(0) = 1.

L′
17 = L18, L17(0) = 0.

L′
18 = Pe

[
L6L16 + L4L18 + L17

(
γL15 − LeJ1L16 −

Nt

Nb

(
1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς(

− Pς ϕc

ϕd

×
(
J1L14 − J2L13 − ϵς

(
J2
2L13 − J1J2L14 − J1J3L13

)))))]
− LbJ1L18, L18(0) = 0.

L′
19 = L20, L19(0) = 0.

L′
20 =

1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L20 − J2L19

− ϵς
(
J2
2L19 − J1J2L20 − J1J3L19

)))
, L20(0) = 0.

L′
21 = L22, L21(0) = 0.

L′
22 = γL21 − LeJ1L22 −

Nt

Nb

(
1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς

(
− Pς ϕc

ϕd

×
(
J1L20 − J2L19

− ϵς
(
J2
2L19 − J1J2L20 − J1J3L19

))))
, L22(0) = 0.

L′
23 = L24, L23(0) = 0.
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L′
24 = Pe

[
L6L22 + L4L24 + L23

(
γL21 − LeJ1L22 −

Nt

Nb

(
1

1 + PςNς

ϕd
− ϵς(J2

1 )
ϕc

ϕd
Pς(

− Pς ϕc

ϕd

×
(
J1L20 − J2L19 − ϵς

(
J2
2L19 − J1J2L20 − J1J3L19

)))))]
− LbJ1L24, L24(0) = 1.

The stopping criteria for the Newton’s method is set as:

| L1(Ω∞, rn,mn, un) |, | L3(Ω∞, rn,mn, un) |, | L5(Ω∞, rn,mn, un) | < 10−5.

4.4 Results and Discussion

Figure 4.1 shows the influence of chemical reaction parameter γ on Φ(Ω). As

the values of γ increases the concentration profile decreases. It is also observed

that MWCNT-SWCNT/EO hybrid nanofluid has higher concentration profile as

compare to SWCNT/EO nanofluid. Figure 4.2 shows the impact of bioconvection

Lewis number Lb on motile microbes profile χ(Ω). It is noted that as the values of

Lb are increases, the motile microorganism profile decreases. Figure 4.3 depicts the

effect of Brownian motion parameter Nb against the Φ(Ω). MWCNT-SWCNT/EO

hybrid nanofluid have higher concentration profile whereas, SWCNT-EO have

lower concentration profile.

Figure 4.4 shows the impact of bioconvection constant ω on χ(Ω). Here values

of ω are taken 0.2, 0.4, 0.6, 0.8, as the values of ω rises the motile profile de-

creases. MWCNT-SWCNT/EO hybrid nanofluid have higher motile profile than

SWCNRT/EO nanofluid. Figure 4.5 illustrates the influence of the parameter of

thermophoresis Nt on Φ(Ω). MWCNT-SWCNT/EO hybrid nanofluid maintains

a higher concentration profile than SWCNT/EO nanofluid. Figure 4.6 shows the

effect of peclet number Pe against χ(Ω). By increasing the peclet number motile

profile decreases. Figure 4.7 depicts the impact of Lewis number Le against Φ(Ω).

The MWCNT-SWCNT with base fluid engine oil has a more notable impact than

SWCNT-EO. By rising the values of Le concentration profile decreases.
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Chapter 5

Conclusion

In this work, article of Jamshed et al. [23] is reviewed and the work is extended

with the effect of chemical reaction, bio convection lewis number, brownian mo-

tion and thermophoresis. First of all, momentum, energy concentration and motile

microorganism equations are converted into the ODEs by using similarity trans-

formations. The transformed ODEs have a numerical solution that has been found

using the shooting technique. Using different values of the physical parameters,

the results are given in the form of tables and graphs. Some important observation

about the flow problem are stated here to conclude the whole research.

i. Increased value of A∗
1 reduce the viscosity which inturns reduce resistance

while increasing fluid velocity

ii. In comparison to SWCNT/EO nanofluid, the hybrid nanofluid moves slowly

across the porous medium. Due to the porous medium Kς the flow is slowed

down and surface needs more time to absorb the heat.

iii. Increasing the value of velocity slip variable Aς velocity, temperature and

entropy profile decreases.

iv. By increasing values ofBς , the entropy profileNG is increased. The Brinkman

number (Bς) are used to depicts the heat generated by viscous properties

74
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as viscous properties increase the generated heat. Ability of such viscous

properties enhanced heat that promotes entropy generation in system.

v. Increased values of A∗
1 and A∗

2 reduce the skin friction for MWCNT with

base fluid EO.

vi. By increasing values of Biot number Hς , Nusselt number also increases for

MWCNT-SWCNT/EO.

vii. As the values of chemical reaction parameter γ increases the concentration

profile decreases. MWCNT-SWCNT/EO hybrid nanofluid have higher con-

centration profile than SWCNT-EO nanofluid.

viii. By increasing value of bioconvection lewis number Lb motile microorganism

profile decrease.
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